Lipo Burn 1 (Caffeine / Theanine / Yohimbine HCl) 50/100/5 mg
Lipo Burn 2 (Caffeine / Chromium Picolinate / DHEA / Inositol / Methionine / Methylcobalamin / Naltrexone HCl / Yohimbine HCl) (Slow Release) 25/0.025/10/25/25/0.5/8/2.5 mg
Lipo Burn 3 (Caffeine / Phentermine HCl / Naltrexone HCl / Methylcobalamin) (Slow Release) 100/20/8/1 mg
Lipo Burn 4 (Caffeine / Phentermine HCl / Naltrexone HCl / Methylcobalamin) (Slow Release) 100/37.5/8/1 mg
Lipo Burn 5 (Chromium Picolinate / DHEA / Inositol / Methionine / Methylcobalamin / Naltrexone HCl / Yohimbine HCl) 0.025/10/25/25/0.5/8/2.5 


Caffeine
Caffeine is a naturally occurring xanthine derivative used as a CNS and respiratory stimulant, or as a mild diuretic. Other xanthine derivatives include the bronchodilator theophylline and theobromine, a compound found in cocoa and chocolate. Caffeine is found in many beverages and soft drinks. Caffeine is often combined with analgesics or with ergot alkaloids for the treatment of migraine and other types of headache. Caffeine is also sold without a prescription in products marketed to treat drowsiness, or in products for mild water-weight gain. Caffeine was first approved by the FDA for use in a drug product in 1938. Clinically, it is used both orally and parenterally as a respiratory stimulant in neonates with apnea of prematurity. Caffeine reduces the frequency of apneic episodes by 30—50% within 24 hours of administration.1 Caffeine is preferred over theophylline in neonates due to the ease of once per day administration, reliable oral absorption, and a wide therapeutic window. A commercial preparation of parenteral caffeine, Cafcit®, was FDA approved for the treatment of apnea of prematurity in October 1999, after years of availability only under orphan drug status (e.g., Neocaf). The FDA has continued the orphan drug status of the approved prescription formulation.

Theanine
L-theanine is a water-soluble amino acid that can be found in mushrooms and green tea. Purified L-theanine is marketed as an oral dietary supplement with purported antioxidant and sedative properties. Numerous investigations conducted on animals and in vitro reveal that the compounds have lipid-lowering,  neuroprotective, antiobesity, and anticancer effects. Other laboratory research suggests L-theanine may influence neurotransmitter levels, reduce cognitive impairment brought on by beta-amyloid, and lengthen life expectancy in C. elegans.
There have been a few studies done on humans as well. Although there were good effects on sleep, there were no significant effects on anxiety in a double-blind trial of supplementary L-theanine for generalized anxiety disorder. Although bigger, well-designed trials are required, several small studies in patients with other illnesses point to benefits in sleep quality as well as a potential reduction in depression, anxiety, and cognitive deficits. Although effects seen with caffeine alone in one study were lost with concurrent L-theanine, some studies testing L-theanine with caffeine suggest increases in cognitive performance. L-theanine helped schizophrenia patients sleep better and with less anxiety when used in conjunction with antipsychotic medication.
Epidemiological evidence suggests drinking green tea may help prevent strokes, but it's not obvious if L-theanine by itself can have this effect.
According to preclinical research, doxorubicin and idarubicin's chemotherapeutic effectiveness are enhanced by L-theanine, and their side effects are reduced. However, since these effects are not supported by clinical research and epigallocatechin-3-gallate (EGCG), a compound found in green tea, decreases the efficacy of the chemotherapy medicine bortezomib, patients receiving chemotherapy should talk with their doctors before using L-theanine. 2

DHEA
Dehydroepiandrosterone (DHEA) is a C19 steroid also known as 5-androsten-3 beta-ol-17-one. DHEA and DHEAS (an active, sulfated form of DHEA), are endogenous hormones secreted by the adrenal cortex in primates and a few non-primate species in response to ACTH. DHEA is a steroid precursor of both androgens and estrogens, and thus is often called 'the mother hormone'. Endogenous DHEA is thought to be important in several endocrine processes, but current medical use of DHEA is limited to controlled clinical trials. In 1997, Pharmadigm, Inc. received an orphan drug designation to enroll patients with thermal burns who require skin-grafting into trials using injectable DHEAS, known as PB-005. Researchers continue to investigate the role of both endogenous and exogenous DHEA in CNS, psychiatric, endocrine, gynecologic and obstetric, immune, and cardiovascular functions.3 GeneLabs Technologies, Inc., submitted an NDA in September 2000 for its proprietary DHEA product, called prasterone (Prestara™, formerly known Aslera™ or GL-701). Prasterone appears to attentuate some symptoms of mild-to-moderate systemic lupus erythematosus (SLE) and may increase bone density based on evidence from two phase III studies in women; studies in men with SLE are ongoing. The FDA placed Prestara™ under a 6-month priority review status in October 2000; on April 19, 2001 the FDA stated that although the drug showed advantages over placebo in one study, the advantages were not statistically significant. Additional data were submitted to the FDA following a 'not approvable' letter on June 26, 2001. On September 2, 2002, the FDA issued an 'approvable' letter for the Prestara™ product, but the agency has asked for additional clinical trial data regarding the drug's effects on bone mineral density before granting final approval for SLE. The manufacturer began a confirmatory phase III trial in early 2003; the primary endpoint will be measurement of bone mineral density of the lumbar spine; the trial is targeted for completion at the end of 2003. In October 2004, the manufacturer released information that Prestara™ therapy did not meet the primary end point in the confirmatory trial. In August 2003, Paladin Labs Inc., received orphan drug designation from the FDA for prasterone, dehydroepiandrosterone, DHEA, under the brand name Fidelin™, for adrenal insufficiency.

Exogenously administered DHEA is sold as a nutritional supplement in health and drug stores and many older individuals are using it to 'maintain the vitality of their youth'. There is currently no objective, well-controlled, large-scale, scientific evidence to back claims that taking DHEA combats the signs or symptoms of aging, diabetes, neurologic disease, sexual dysfunction, or heart disease.4 Some athletes abuse DHEA believing that it can enhance the body's synthesis of testosterone; the potential action of DHEA as an anabolic steroid has lead to the prohibition of supplementation in competitive sport, even though evidence of anabolic effects in athletes is lacking.5 DHEA is also abused by athletes in an attempt to normalize the testosterone:epitestosterone ratio. However, the sensitivity and specificity of currently available testing for athletic 'doping' can readily identify the presence of banned substances, including testosterone. Because of DHEA's complex physiologic actions, more than 500 scientific articles investigating it have been published since 1993. Many of the short-term trials of DHEA to date have lacked the rigor and statistical applications needed to support therapeutic claims. Most claims will need to be confirmed by large-scale, properly conducted, and controlled studies. In 1984, the FDA banned the non-prescription (OTC) sale of exogenous DHEA due to concern over hepatotoxicity (hepatitis and hepatic tumors) as noted in animal studies. The FDA formally relegated DHEA to a Category II OTC ingredient at that time (i.e., not generally recognized as safe and effective). However in 1994, the passage of the US Dietary Supplement Health and Education Act (DSHEA) allowed DHEA to be marketed as a nutritional or dietary supplement.

Inositol
Inositol is a family of cyclic sugar alcohols consisting of nine stereoisomers of hexahydroxycyclohexane. The stereoisomers of the inositol family are myo-, scyllo-, muco-, neo-, allo-, epi-, cis-, and the enantiomers L- and D-chiro-inositol. Of these, myo-inositol and D-chiro-inositol are among the most abundant biologically active forms. The enzyme epimerase converts myo-inositol to the D-chiro-inositol isomer, maintaining organ-specific ratios of the two isomers. Physiologically, the concentration of myo-inositol is several times higher than D-chiro-inositol in most tissues.6

The myo-inositol derivative phosphatidylinositol is an important component of the lipid bilayer of cell membranes. Phosphatidylinositol and its phosphorylated forms act as second messengers that are involved in a host of cellular functions including membrane trafficking, autophagy, cell migration, and survival. Disruption of phosphoinositide lipid signaling is implicated in cancer, diabetes, and cardiovascular disorders.7

Inositol has shown clinical benefits in treating disorders associated with metabolic syndrome. Inositol supplementation has been effectively used to accelerate weight loss, reduce fat mass,8 improve serum lipid profiles and upregulate the expression of genes involved in lipid metabolism and insulin sensitivity9 in women with polycystic ovarian syndrome. Myo-inositol alone or in combination with D-chiro-inositol significantly reduced weight, BMI, and waist-hip circumference ratios in overweight/obese women with PCOS. Weight loss, reduction in fat mass and increase in lean mass were accelerated when inositol supplementation was accompanied by a low-calorie diet.10 In addition, inositol supplementation was associated with lower rate of gestational diabetes and preterm delivery in pregnant women.8 Currently, research is being performed to assess whether inositol may be used in treating various cancers.

Methionine
Methionine is a sulfur-containing branched-chain amino acid. A precursor for cellular methylation reactions, methionine plays an important role in lipid metabolism, polyamine synthesis, immune function, heavy metal chelation, and maintenance of redox balance.11 Conversely, dietary methionine restriction in rodents increased energy expenditure, improved insulin resistance, and enhanced lipolysis and fatty acid oxidation in adipose tissue.12

The lipotropic effects of methionine may be attributed to its metabolite S-adenosyl methionine (SAM). SAM is synthesized from methionine via an energy-consuming reaction. SAM administered orally or by injection has been investigated as a treatment for liver diseases, osteoarthritis, and depression.13 The benefits bestowed by SAM may be due to its role as a methyl donor in biochemical processes governing lipid homeostasis, DNA stability, gene expression, and neurotransmitter release.141516

Methylcobalamin
Methylcobalamin, or vitamin B12, is a B-vitamin. It is found in a variety of foods such as fish, shellfish, meats, and dairy products. Although methylcobalamin and vitamin B12 are terms used interchangeably, vitamin B12 is also available as hydroxocobalamin, a less commonly prescribed drug product (see Hydroxocobalamin monograph), and methylcobalamin. Methylcobalamin is used to treat pernicious anemia and vitamin B12 deficiency, as well as to determine vitamin B12 absorption in the Schilling test. Vitamin B12 is an essential vitamin found in the foods such as meat, eggs, and dairy products. Deficiency in healthy individuals is rare; the elderly, strict vegetarians (i.e., vegan), and patients with malabsorption problems are more likely to become deficient. If vitamin B12 deficiency is not treated with a vitamin B12 supplement, then anemia, intestinal problems, and irreversible nerve damage may occur.

The most chemically complex of all the vitamins, methylcobalamin is a water-soluble, organometallic compound with a trivalent cobalt ion bound inside a corrin ring which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Methylcobalamin cannot be made by plants or by animals; the only type of organisms that have the enzymes required for the synthesis of methylcobalamin are bacteria and archaea. Higher plants do not concentrate methylcobalamin from the soil, making them a poor source of the substance as compared with animal tissues.

Naltrexone HCl
Naltrexone is an oral opiate receptor antagonist. It is derived from thebaine and is very similar in structure to oxymorphone. Like parenteral naloxone, naltrexone is a pure antagonist (i.e., agonist actions are not apparent), but naltrexone has better oral bioavailability and a much longer duration of action than naloxone. Clinically, naltrexone is used to help maintain an opiate-free state in patients who are known opiate abusers. Naltrexone is of greatest benefit in patients who take the drug as part of a comprehensive occupational rehabilitative program or other compliance-enhancing program. Unlike methadone or LAAM, naltrexone does not reinforce medication compliance and will not prevent withdrawal. Naltrexone has been used as part of rapid and ultrarapid detoxification techniques. These techniques are designed to precipitate withdrawal by administering opiate antagonists. These approaches are thought to minimize the risk of relapse and allow quick initiation of naltrexone maintenance and psychosocial supports. Ultrarapid detoxification is performed under general anesthesia or heavy sedation. While numerous studies have been performed examining the role of these detoxification techniques, a standardized procedure including appropriate medications and dose, safety, and effectiveness have not been determined in relation to standard detoxification techniques.17 Naltrexone supports abstinence, prevents relapse, and decreases alcohol consumption in patients treated for alcoholism. Naltrexone is not beneficial in all alcoholic patients and may only provide a small improvement in outcome when added to conventional therapy. The FDA approved naltrexone in 1984 for the adjuvant treatment of patients dependent on opiate agonists. FDA approval of naltrexone for the treatment of alcoholism was granted January 1995. The FDA approved Vivitrol, a once-monthly intramuscular naltrexone formulation used to help control cravings for alcohol in April 2006, and then in October 2010, the FDA approved Vivitrol for the prevention of relapse to opioid dependence after opioid detoxification.

Phentermine HCl
Phentermine is an oral sympathomimetic amine used as an adjunct for short-term (e.g., 8—12 weeks) treatment of exogenous obesity. The pharmacologic effects of phentermine are similar to amphetamines. Phentermine resin complex was approved by the FDA in 1959, but is no longer marketed in the US. Phentermine hydrochloride was FDA approved in 1973. In the mid-90s, there was renewed interest in phentermine in combination with another anorectic, fenfluramine, for the treatment of obesity and substance abuse, however, little scientific data support this practice. On July 8, 1997, the FDA issued a 'Dear Health Care Professional' letter warning physicians about the development of valvular heart disease and pulmonary hypertension in women receiving the combination of fenfluramine and phentermine; fenfluramine was subsequently withdrawn from the US market in fall of 1997. Use of phentermine with other anorectic agents for obesity has not been evaluated and is not recommended. In May 2011, the FDA approved a phentermine hydrochloride orally disintegrating tablet (Suprenza) for the treatment of exogenous obesity.18

Yohimbine HCl
Yohimbine is an oral alpha-2 blocker that is chemically related to reserpine. It is an alkaloid found in the bark of Rubiaceae and related trees, but can also be found in Rauwolfia serpentina. Yohimbine has been proposed as a treatment for erectile dysfunction (ED), however only limited evidence exist. According to ED treatment guidelines, only one small study in the published literature used acceptable efficacy outcome measures; therefore, conclusions about the clinical efficacy of yohimbine have not been established and its use in the treatment of ED is not recommended. Further, associated adverse events such as elevations of blood pressure and heart rate, increased motor activity, irritability, and tremor may limit its use.1920 Yohimbine has been available since before 1938
Dosage Strengths of Lipo Capsules
Inositol / Choline Bitartrate / Methylcobalamin / Chromium Picolinate 250/250/1/0.2 mg

Inositol
Inositol is a family of cyclic sugar alcohols consisting of nine stereoisomers of hexahydroxycyclohexane. The stereoisomers of the inositol family are myo-, scyllo-, muco-, neo-, allo-, epi-, cis-, and the enantiomers L- and D-chiro-inositol. Of these, myo-inositol and D-chiro-inositol are among the most abundant biologically active forms. The enzyme epimerase converts myo-inositol to the D-chiro-inositol isomer, maintaining organ-specific ratios of the two isomers. Physiologically, the concentration of myo-inositol is several times higher than D-chiro-inositol in most tissues.1

The myo-inositol derivative phosphatidylinositol is an important component of the lipid bilayer of cell membranes. Phosphatidylinositol and its phosphorylated forms act as second messengers that are involved in a host of cellular functions including membrane trafficking, autophagy, cell migration, and survival. Disruption of phosphoinositide lipid signaling is implicated in cancer, diabetes, and cardiovascular disorders.2

Inositol has shown clinical benefits in treating disorders associated with metabolic syndrome. Inositol supplementation has been effectively used to accelerate weight loss, reduce fat mass,3 improve serum lipid profiles and upregulate the expression of genes involved in lipid metabolism and insulin sensitivity4 in women with polycystic ovarian syndrome. Myo-inositol alone or in combination with D-chiro-inositol significantly reduced weight, BMI, and waist-hip circumference ratios in overweight/obese women with PCOS. Weight loss, reduction in fat mass and increase in lean mass were accelerated when inositol supplementation was accompanied by a low-calorie diet.5 In addition, inositol supplementation was associated with lower rate of gestational diabetes and preterm delivery in pregnant women.3 Currently, research is being performed to assess whether inositol may be used in treating various cancers.

Choline
Choline is an essential nutrient that is naturally present in certain foods and available as a supplement. Additionally, a tiny quantity can be produced by the body on its own in the liver, but not enough to meet daily requirements. Acetylcholine, a neurotransmitter that is produced from choline, aids in the contraction of muscles, triggers pain perception, and aids in memory and thought processes. The liver is where most choline is metabolized; there, it is changed into phosphatidylcholine, which aids in the formation of proteins that carry fat and the breakdown of cholesterol.
 6

Methylcobalamin
Methylcobalamin, or vitamin B12, is a B-vitamin. It is found in a variety of foods such as fish, shellfish, meats, and dairy products. Although methylcobalamin and vitamin B12 are terms used interchangeably, vitamin B12 is also available as hydroxocobalamin, a less commonly prescribed drug product (see Hydroxocobalamin monograph), and methylcobalamin. Methylcobalamin is used to treat pernicious anemia and vitamin B12 deficiency, as well as to determine vitamin B12 absorption in the Schilling test. Vitamin B12 is an essential vitamin found in the foods such as meat, eggs, and dairy products. Deficiency in healthy individuals is rare; the elderly, strict vegetarians (i.e., vegan), and patients with malabsorption problems are more likely to become deficient. If vitamin B12 deficiency is not treated with a vitamin B12 supplement, then anemia, intestinal problems, and irreversible nerve damage may occur.

The most chemically complex of all the vitamins, methylcobalamin is a water-soluble, organometallic compound with a trivalent cobalt ion bound inside a corrin ring which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Methylcobalamin cannot be made by plants or by animals; the only type of organisms that have the enzymes required for the synthesis of methylcobalamin are bacteria and archaea. Higher plants do not concentrate methylcobalamin from the soil, making them a poor source of the substance as compared with animal tissues.


Dosage Strengths of Lipo Injection
Methionine / Choline Chloride 25/50 mg/mL 10 mL Vial

Methionine / Choline Chloride 25/50 mg/mL 30 mL Vial


General Information
Lipotropes are compounds that may aid in the breakdown of body fat by acting on lipid metabolism and synthesis pathways. When used in combination with lifestyle modifications such as exercise and diet, lipotropic compounds may promote fat and weight loss.

Lipotropic compounds including vitamins, nutrients, and other natural or pharmacological agents may be administered as injections or in the form of oral supplements. Injections provide the advantage of better bioavailability by avoiding enzymes in the gastrointestinal tract. In addition, injections may be especially beneficial in individuals with gastrointestinal absorption issues.

The lipotropic agents in this injection are methionine, inositol, and choline. While each may individually affect the mobilization of fats, the combination may provide synergistic benefits.123 The physiological role of each compound and the effects of supplementation are described below.

Methionine
A branched-chain amino acid with sulfur is methionine. Methionine is crucial for immune system function, lipid metabolism, polyamine production, heavy metal chelation, and redox balance since it is a precursor for cellular methylation processes.4 In contrast, methionine limitation in the diet decreased insulin resistance in rodents and promoted adipose tissue lipolysis and fatty acid oxidation.5

The metabolite S-adenosyl methionine (SAM) of methionine, which has lipotropic properties, may be responsible. Methionine is converted into SAM by a process that requires energy. For the treatment of depression, osteoarthritis, and liver conditions, SAM has been studied when taken orally or intravenously.6 SAM may act as a methyl donor in the metabolic processes that control lipid homeostasis, DNA stability, gene expression, and neurotransmitter release, which may account for the benefits it confers.789

Inositol
Inositol is a family of cyclic sugar alcohols consisting of nine stereoisomers of hexahydroxycyclohexane. The stereoisomers of the inositol family are myo-, scyllo-, muco-, neo-, allo-, epi-, cis-, and the enantiomers L- and D-chiro-inositol. Of these, myo-inositol and D-chiro-inositol are among the most abundant biologically active forms. The enzyme epimerase converts myo-inositol to the D-chiro-inositol isomer, maintaining organ-specific ratios of the two isomers. Physiologically, the concentration of myo-inositol is several times higher than D-chiro-inositol in most tissues.10

The myo-inositol derivative phosphatidylinositol is an important component of the lipid bilayer of cell membranes. Phosphatidylinositol and its phosphorylated forms act as second messengers that are involved in a host of cellular functions including membrane trafficking, autophagy, cell migration, and survival. Disruption of phosphoinositide lipid signaling is implicated in cancer, diabetes, and cardiovascular disorders.11

Inositol has shown clinical benefits in treating disorders associated with metabolic syndrome. Inositol supplementation has been effectively used to accelerate weight loss, reduce fat mass,12 improve serum lipid profiles and upregulate the expression of genes involved in lipid metabolism and insulin sensitivity13 in women with polycystic ovarian syndrome. Myo-inositol alone or in combination with D-chiro-inositol significantly reduced weight, BMI, and waist-hip circumference ratios in overweight/obese women with PCOS. Weight loss, reduction in fat mass and increase in lean mass were accelerated when inositol supplementation was accompanied by a low-calorie diet.14 In addition, inositol supplementation was associated with lower rate of gestational diabetes and preterm delivery in pregnant women.12 Currently, research is being performed to assess whether inositol may be used in treating various cancers.

Choline
Choline is an essential nutrient required for optimal functioning of various tissues including the liver, muscles, and brain.15 Since choline breaks down fat as an energy source, choline supplementation caused rapid fat and weight loss in female athletes.16 Only small amounts of choline are synthesized by the human body, necessitating its intake from external sources. In the body, about 95% of the total choline pool is converted to phosphatidylcholine – an essential component of the phospholipid bilayer and the predominant phospholipid in most mammalian cells.17 Choline also undergoes acetylation to form the neurotransmitter acetylcholine. Choline deficiency causes hepatic steatosis (fatty liver disease) and leads to loss of muscle membrane integrity. Chronic choline deficiency may also increase the risk of developing cancer.

Both choline and methionine are a source of methyl groups for the one-carbon transmethylation pathway and serve hepato-protective functions. Culturing hepatocytes in choline and methionine-deficient media impaired VLDL secretion.18 In addition, choline can donate methyl groups to support methionine regeneration, possibly contributing to their synergistic lipotropic effects.
Dosage Strengths of Lipo-B Injection
Methionine / Choline Chloride / Cyanocobalamin 25/50/1 mg/mL 10 mL Vial
Methionine / Choline Chloride / Cyanocobalamin 25/50/1 mg/mL 30 mL Vial


General Information
The Lipo-B (MIC) injection is a product that contains a combination of compounds that have been shown to exhibit lipotropic effects. The lipotropic effects facilitate the burning of adipose tissue within the human body which may, consequently, result in some degree of weight loss. Lipo-B injections are typically used as fat loss supplements, in combination with diet and exercise, in weight loss plans. The combination of products that make up the Lipo-B (MIC) injection are methionine, choline, and cyanocobalamin (vitamin B12).

Methionine
Methionine is one of the four sulfur-containing amino acids; the other three are cysteine, homocysteine, and taurine. Additionally, it is one of the nine essential amino acids in the human body. As an essential amino acid, it cannot be synthesized de novo by the human body due to a lack of the require metabolic pathway needed for its synthesis. Therefore, methionine has to be exogenously introduced into the human body either within the diet or as a supplement.12

Methionine serves several key roles in the human body such as:

Substrate in the production of critical hormones and proteins including L-cysteine, carnitine, adrenaline, choline, and melatonin, among others.
Increasing liver production of lecithin which helps lower serum cholesterol levels.
Provides sulfur which aids development of nails and promotes hair growth.
Chelating agent which helps get rid of heavy metals such as mercury.
Provides protection against hepatotoxins such as acetaminophen.

Choline
Choline is an essential nutrient that plays a key role in a number of metabolic pathways in the human body. Even though choline is produced endogenously in the liver, it is still considered an essential nutrient because the quantities produced is not sufficient to meet the body's metabolic needs; as such, dietary supplementation of choline is necessary. Choline can be found in both animal and plant food sources, with animal food sources generally having more choline per gram of food product.

Some functions that choline serves in the body are:

Production of sphingomyelin and phosphatidylcholine, which are needed to maintain cell membrane integrity.
Production of acetylcholine, which is one of the major neurotransmitters in the body.
Modulation of gene expression and cell membrane signaling.
Early brain development in fetuses.


Cyanocobalamin
Otherwise known as vitamin B12, cyanocobalamin derives its name from the fact that it has a cyanide group attached to its molecule and also contains the mineral cobalt. It is essential for cellular energy production as well as DNA synthesis. It is an essential water-soluble vitamin and must be obtained from food or as dietary supplements. Some good food sources of vitamin B12 are meat, fish, milk, eggs, and cheese, among others. Some of the roles that cyanocobalamin serves in the body include:

Cofactor for methionine synthase and L-methymalonyl-CoA mutase.
Synthesis of methionine from homocysteine.
Regeneration of tetrahydrofolate from 5-methyltetrahydrofolate
Dosage Strengths of Lipo-C Injection
Methionine/ Choline Chloride / L-Carnitine / Dexpanthenol 15/50/50/5 mg/mL 10 mL Vial
Methionine / Choline Chloride / L-Carnitine / Dexpanthenol 15/50/50/5 mg/mL 30 mL Vial


General Information
Lipo-C injection contains a mixture of compounds that may aid in the reduction of adipose tissue (fat). The mixture of compounds individually may be effective, however in combination they may exhibit more lipotropic activity than when administered alone in a synergistic fashion. Injection of this mixture of lipotropic compounds may be more effective than oral supplementation, this is due to the increased bioavailability of parenteral exposure.

These lipotropic agents are structurally and functionally closely related to the B-vitamins, or are involved in the homeostasis of energy production from fat. These compounds are often employed together in the hope of potentiating fat-loss, thus while the Methionine Choline mixture and B vitamin(s) are often injected separately, they are part of the same overall injection cycle. The non-vitamin compounds that are injected into the body stimulate the liver into optimizing the process of metabolism, elevate the movement of and utilization of fat, and provide the needed metabolic environment of the body for a fatty acid (fat) mobilization and utilization.

Lipotropic compounds are used on the potential for release of fat deposits in some parts of the body. They sometimes go by the names Lipo-Den, Lipo-Plex, Lipo Shot, or MIC Injection. The lipotropic agents included in this injection are:

Methionine
Methionine helps the liver maintain the optimal ability to process fatty acids.1 Methionine is a major constituent of S-adenosylmethionine which has been shown to be associated in genetic regulation and activation of certain genes.2 Methionine contributes to methyl donation to histones that activate certain genetic processes that may be involved in the increase in lean tissue. Although indirectly linked to lipolysis, it is believed that the increase in lean tissue increases resting metabolic rate, therefore increasing the overall required calories that must be obtained from storage or dietary intake. Methionine, via S-adenosylmethionine, has been shown in animal models to increase CNS activity, therefore increasing the caloric requirements required by the CNS3 The downstream effects of this may ultimately lead to increased caloric requirements for the entire organism. Although studies have not been replicated.4 in humans, there may be an association due to the similarity in pathways shared between organisms.

Choline
Choline is a simple molecule usually classified as a B vitamin. The B vitamin class is usually involved in the generation of energy and support of metabolism. Choline is an important precursor to the neurotransmitter acetylcholine. This neurotransmitter is involved in a host of activities, one of which includes muscular function and contraction. Acetylcholine is a fundamental neurotransmitter that enables the communication between neurons. Increased neural communication results in increased CNS activity which ultimately leads to increased energy expenditure. Energy expenditure requires nutrient input, either from stored energy (fat), or dietary nutrients. Choline exist in a delicate balance and homeostasis with methionine and folate. When these nutrients are not in balance adverse health effects may be present. Along with the increase in CNS activity comes increased cognitive ability, reported by many users. Choline may be effective as a nootropic, or a substance with ability to increase cognition. Increased neural cognition is thought to be due to choline’s role as a precursor to acetylcholine.

The supplementation of choline has been shown to reduce serum and urinary carnitine.4 The reduction of carnitine in these fluids may indicate carnitine has been partitioned in tissues that utilize it as a fatty acid mitochondrial transport. When carnitine is used in the mitochondria it transports fatty acids to the location which they are broken down and used as energy. It has also been reported that molecular fragments of fat have been found in urine after carnitine and choline supplementation, which may be due to incomplete fatty acid oxidation and the removal of the subsequent byproducts.4 This means, choline supplementation may increase the utilization of carnitine and increase the removal of fatty acids, even though all fatty acids are not burned as energy. The fragments of fatty acids not burned as energy are extruded in the urine as molecular fragments.

Methionine, which helps the liver maintain the optimal ability to process fatty acids;5 Choline, which stimulates the mobilization of fatty acids and prevents their deposition in a given part of the body;6 and, Inositol, which aids in the transport of fat into and out of the liver and intestinal cells, acts synergistically with choline, exhibiting more lipotropic activity than when administered alone.7
As soon as the effect of all 6 of these substances wears out, the body gradually begins returning to its normal rate of fat and general metabolism.

Typically, these compounds are administered in concert. Injections can be administered up to twice a week. B12 is purported by its users and practitioners to help speed up overall metabolic processes and create a greater feeling of overall energy & well-being.8 Because these lipotropics are structurally and functionally closely related to the B-vitams, they are often employed together in the hope of potentiating the potential for fat-loss, thus while the mixture and B vitamin(s) are often injected separately, they are part of the same overall injection cycle. The non-vitamin compounds that are injected into the body stimulate the liver into optimizing the process of metabolism, elevate the movement of and utilization of fat, and boost the metabolic power of the body for a while.

Other compounds are included as an attempt to further potentiate these effects:

L-Carnitine
Dexpanthenol (Vitamin B5)

Dosage Strengths of Cyanocobalamin Injection
2,000 mcg/mL 5 mL Vial
2,000 mcg/mL 30 mL Vial

Cyanocobalamin is a vitamin of the B-complex family, commonly known as cobalamins (corrinoids). It is a synthetic or man-made form of vitamin B12 that is available as both a prescription and over-the-counter (OTC) medication. Cobalamins exist in several other chemical forms, including hydroxocobalamin, methylcobalamin, and adenosylcobalamin.

Cyanocobalamin is the most common form of cobalamins used in nutritional supplements and fortified foods. It contains a cyano (cyanide) group in its structure, which makes it more stable than other forms of vitamin B12 as the cyanide stabilizes the molecule from deterioration. Hydroxocobalamin, however, is the most biologically active form of Vitamin B12; hence, it is more preferable than cyanocobalamin for the treatment of vitamin B12 deficiency.

Cyanocobalamin does not naturally exist in foods owing to the presence of cyanide, which is absent in the natural form of the vitamin. The chemical structure of cyanocobalamin contains the rare mineral cobalt (4.34%), which binds the cyano group and is located in the center of a corrin ring.5 The commercial manufacturing of the vitamin is done through bacterial fermentation. Compared to other forms of vitamin B12, it is easier to crystallize and more air-stable.3 Cyanocobalamin is usually obtained as a dark red, amorphous or crystalline powder, orthorhombic needles, or red crystals. The anhydrous form of the compound is highly hygroscopic. It may absorb up to 12% of water if exposed to air. Cyanocobalamin is sparingly soluble in alcohol and water (1 in 80 of water), but insoluble in chloroform, acetone, and ether. The coenzymes of this vitamin are highly unstable in light.

Cyanocobalamin is available in several dosage forms including the tablet, nasal spray, and injection. The US-FDA initially approved the drug in 1942. However, the compound became widely available for routine use in the treatment of B12 deficiency in the early 1950s
Dosage Strengths of Methylcobalamin Injection
10,000 mcg Lyophilized Vial

General Information
General Information
Methylcobalamin, or vitamin B12, is a B-vitamin. It is found in a variety of foods such as fish, shellfish, meats, and dairy products. Although methylcobalamin and vitamin B12 are terms used interchangeably, vitamin B12 is also available as hydroxocobalamin, a less commonly prescribed drug product (see Hydroxocobalamin monograph), and methylcobalamin. Methylcobalamin is used to treat pernicious anemia and vitamin B12 deficiency, as well as to determine vitamin B12 absorption in the Schilling test. Vitamin B12 is an essential vitamin found in the foods such as meat, eggs, and dairy products. Deficiency in healthy individuals is rare; the elderly, strict vegetarians (i.e., vegan), and patients with malabsorption problems are more likely to become deficient. If vitamin B12 deficiency is not treated with a vitamin B12 supplement, then anemia, intestinal problems, and irreversible nerve damage may occur.

The most chemically complex of all the vitamins, methylcobalamin is a water-soluble, organometallic compound with a trivalent cobalt ion bound inside a corrin ring which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Methylcobalamin cannot be made by plants or by animals; the only type of organisms that have the enzymes required for the synthesis of methylcobalamin are bacteria and archaea. Higher plants do not concentrate methylcobalamin from the soil, making them a poor source of the substance as compared with animal tissues.

Dosage Strength of Vitamin B-Complex Injection
Each mL contains: B1 (Thiamine HCl) 100 mg, B2 (Riboflavin-5-Phosphate Sodium) 2 mg, B3 (Niacinamide) 100 mg, B5 (Dexpanthenol) 2 mg, B6 (Pyridoxine HCl) 2 mg. 30 mL Vial


General Information
Vitamin B complex is essential for a wide variety of functions in the human body, Its deficiency can also lead to several disorders including chronic neurological ones. Biochemically, different structures are grouped together under B complex on the basis of their natural occurrence in same type of food and solubility in water. Since humans are not able to synthesize vitamins in B complex on their own and these vitamins are easily excreted from the body through urine, their regular intake is essential to maintain energy production, DNA/RNA synthesis/repair, genomic and non-genomic methylation as well as synthesis of numerous neurochemicals and signalling molecules. B complex deficiency is normally caused due to four possible reasons; high consumption of processed and refined food, with lack of dairy and meat-based food in diet, excessive consumption of alcohol, impaired absorption from the gastrointestinal tract or impaired storage and use by liver.1

According to clinical research parenteral administration (intramuscular or intravenous) is preferred over other drug administration routes in case of emergency situations as it provides first-pass metabolism avoidance, reliable therapeutic concentrations and better bioavailability of dosage.2 It can also be used in situations when oral route is not feasible.

Pharmaceutical preparation:

Each 30 mL vial contains: 100 mg of vitamin B1 in form of thiamine hydrochloride, 2 mg of vitamin B2 in form riboflavin-5-Phosphate Sodium, 100 mg of B3 in form niacinamide, 2 mg of vitamin B5 in form of dexpanthenol and 2 mg of vitamin B6 in form of pyridoxine hydrochloride.

B vitamins are necessary for the proper functioning of the methylation cycle, DNA synthesis, repair and maintenance of phospholipids and generally essential for healthy skin, muscles, brain, and nerve functionality.3 The individual functions are described below but more often than not they work together to achieve the required effect.

Vitamin B1 (Thiamine)

It plays an important role in energy metabolism, immunity boosting and functioning of nervous system. It can help avoid type 2 diabetes, several cardiovascular diseases, some vision and kidney disorders and neurodegenerative diseases like Alzheimer’s disease.

Vitamin B2 (Riboflavin)

It is a powerful antioxidant and plays a vital role in maintaining healthy blood cells and boosts metabolism.

Vitamin B3 (Niacin)

Niacin plays a critical role in proper functioning of the nervous and digestive systems. Like other vitamins from the family it is necessary for energy production and metabolism of fatty acids. It also provides healthy skin, nails, and hair.

Vitamin B5 (Pantothenic Acid)

Pantothenic acid is essential for healthy development of the central nervous system. It is involved in energy production and through different metabolic and anabolic cycles in development of amino acids, blood cells, vitamin D3 and other fatty acids.

Vitamin B6 (Pyridoxine)

Vitamin B6 has a very influential role in synthesis of neurotransmitters and is essential for good mental health. It also has a direct effect on immune function. It plays a role in metabolism of amino acids and is a necessary co-factor in the folate cycle, lack of which can lead to anaemia.
Epidemiological evidence in some cases hints that the accepted dosages of vitamin B helps only to avoid their marginal deficiency and further benefits could accrue from higher dosages than those provided by RDA
Request Medication

What do we do

Why Choose Us

easy, fast medical care:

Protected Records
privacy protected medical care
Request medications 24/7
24/7 care from the comfort of your home
No insurance? No problem
all healthcare, medication refills without insurance
Recurring Refills
up to 3 month supply on routine medicaitons

Take the first step in taking control of your healthcare